Discrete plasticity in sub-10-nm-sized gold crystals

نویسندگان

  • He Zheng
  • Ajing Cao
  • Christopher R. Weinberger
  • Jian Yu Huang
  • Kui Du
  • Jianbo Wang
  • Yanyun Ma
  • Younan Xia
  • Scott X. Mao
چکیده

Although deformation processes in submicron-sized metallic crystals are well documented, the direct observation of deformation mechanisms in crystals with dimensions below the sub-10-nm range is currently lacking. Here, through in situ high-resolution transmission electron microscopy (HRTEM) observations, we show that (1) in sharp contrast to what happens in bulk materials, in which plasticity is mediated by dislocation emission from Frank-Read sources and multiplication, partial dislocations emitted from free surfaces dominate the deformation of gold (Au) nanocrystals; (2) the crystallographic orientation (Schmid factor) is not the only factor in determining the deformation mechanism of nanometre-sized Au; and (3) the Au nanocrystal exhibits a phase transformation from a face-centered cubic to a body-centered tetragonal structure after failure. These findings provide direct experimental evidence for the vast amount of theoretical modelling on the deformation mechanisms of nanomaterials that have appeared in recent years.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nano-sized AlPO4-5 Crystals: Synthesis and characterization

Molecular sieves and zeolites are materials whose crystalline frameworks form nanometer or subnanometer pores. A variety of different crystal structures are known having a range of pore sizes. Because the pore sizes are usually smaller than 2 nm, they are classified as microporous materials. Synthesis of microporous materials is usually conducted by the high temperature treatment (80-200 °C) of...

متن کامل

Nano-sized AlPO4-5 Crystals: Synthesis and characterization

Molecular sieves and zeolites are materials whose crystalline frameworks form nanometer or subnanometer pores. A variety of different crystal structures are known having a range of pore sizes. Because the pore sizes are usually smaller than 2 nm, they are classified as microporous materials. Synthesis of microporous materials is usually conducted by the high temperature treatment (80-200 °C) of...

متن کامل

Fundamental differences in mechanical behavior between two types of crystals at the nanoscale.

We present differences in the mechanical behavior of nanoscale gold and molybdenum single crystals. A significant strength increase is observed as the size is reduced to 100 nm. Both nanocrystals exhibit discrete strain bursts during plastic deformation. We postulate that they arise from significant differences in the dislocation behavior. Dislocation starvation is the predominant mechanism of ...

متن کامل

Proceedings of the 9 th Biennial ASME Conference on Engineering Systems Design and Analysis ESDA 2008 July 7 - 9 , 2008 , Haifa , Israel ESDA 2008 - 59117 IN - SITU INVESTIGATION of PLASTICITY at NANO - SCALE

Mechanical behavior of crystals is dictated by dislocation motion in response to applied force. While it is extremely difficult to directly observe the motion of individual dislocations, several correlations can be made between the microscopic stress-strain behavior and dislocation activity. Here, we present for the first time the differences observed between mechanical behavior in two fundamen...

متن کامل

Time-resolved Laue diffraction of deforming micropillars.

We demonstrate real-time resolved white beam Laue diffraction during compression of micron-sized focused ion beam milled single crystals Au pillars, revealing the dynamical correlation between microstructure and plasticity. The evolution of the Laue patterns of the Au pillars demonstrates the occurrence of crystal rotation and strengthening is explained by plasticity starting on a slip system t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010